The author’s veins on display
This series of images was generated by the Christie DLP VeinViewer [PDF]. This device projects infrared light onto your hand. A camera detects areas with blood vessels near the skin because blood doesn’t reflect the IR light, but the surrounding tissue does. The resulting image is projected onto my hand by a interesting Texas Instruments technology, the DLP digital imaging chip. DLP technology is essentially a super tiny array of movable mirrors. Each mirror, 1/5th the width of a human hair, is individually controlled to reflect a pixel of light in 1024 values of brightness. In advanced applications, a DLP projector can create up to 35 trillion colors.
I was treated to demos of DLP products and much more during a behind-the-scenes tour of Texas Instruments at a recent media day. Here are a number of cool things that TI showed us which may have an impact on your hardware projects in the future:
The LightCrafter Structured Light Projector For 3D Scanning
High Accuracy 3D Scanning Using DLP Projector
TI DLP Powers Precision 3D Inspection, Image Courtesy TI
The 3D Optical Metrology process is easy, and using DLP technology, delivers high quality results:One of the more interesting possibilities is detecting cracks or flaws in things like carbon fiber bicycle parts with the LightCrafter and a good camera. The LightCrafter module is $600, which seems a reasonable price for a completely hackable projector. Better yet, TI provides a GUI tool to configure and control the LightCrafter, simplifying development and testing.
- Patterns of light project onto a target
- A camera or sensor captures the light distortions on the target
- Data are then analyzed by a processor
- The result is very detailed, 3D point cloud information (x,y,z) about the target
The DLP Dashboard
TI DLP Virtual Car Console in Audio Player Mode
The entire curved screen was touch-sensitive. There were knobs mounted on the front of the screen that actually worked like real knobs, even though they had no electronics. They did have a pattern printed on the back, visible through the screen and captured by the camera, giving precise feedback for the knob position.
MSP430, A Low Power Leader
The $4.30 MSP430 Launchpad, Image Courtesy TI
Digital Signal Processing
C2000 Peripheral Explorer Kit, Image Courtesy TI
TI Signal Processing Innovation Through The Ages, Image Courtesy TI
These chips are incredibly complex though. Remember programming your TI calculator? Maybe not. If you did, it was probably pretty difficult the first time, and that first impression matters. Texas Instruments is aware of the challenge developers face with increasing DSP complexity. They were eager to talk about how they were delivering better out-of-the-box development tools with the new release of Code Composer Studio, their primary DSP dev tool. TI’s DSP product line covers the high bandwidth C6000 and C5000 family DSPs, but they also have some intriguing low cost parts in the C2000 [PDF] line. Although TI doesn’t really consider their C2000 family of parts to be true DSPs, they are useful for many low-end signal processing applications. TI mentioned future innovations for the C2000 low power processors, including power consumption as low as as 50mW while running at 200 MHz, and a growing library of easy to use software modules for applications like energy measurement and control. They envision the C2000 products being used in applications like mobile robotics and micro-grid products. Eagle libraries are also on the way, as are new development boards and Mac compatibility.
Motor Control
There are over 10 billion electric motors manufactured every year around the world and Texas Instruments wants to control them all! The TI folks wanted to be sure that we knew 40% of a typical home electric bill is consumed by an motor, and that better motor control could cut power consumption by more than 1/3, saving all of us a lot of money and reducing wasted energy significantly. The technology exists, they said, but it has been too expensive and hard to use. Thus TI is developing better, cheaper, faster motor control algorithms that will be “software peripherals” pre-programmed into their DSP products. They showed a product called InstaSPIN, which claimed to solve problems like starting and reversing motors without requiring position sensors, and optimizing motor efficiency when not running at full load. TI also claimed that they had reduced the time it takes to figure out a motor control strategy from several weeks to several hours. I’ll have to see it to believe it!
BeagleBone

We recently covered this promising product, and will continue to do so. It is a powerful, inexpensive, and tiny board that can be set up to run Linux in seconds. There is also a great community of developers creating applications and tools for it. At $89, it is definitely recommended to get you started with embedding Linux in your next project.
Pandaboard

> PandaBoard Diagram, image from www.omappedia.com CC BY-SA 3.0The Pandaboard is something I’m looking forward to getting my hands on. It is a powerful single-board computer featuring a multiprocessor architecture, graphics acceleration, HD video and dual display capability, and a very rich set of communication interfaces:

TI Explores the Unknown, Image Courtesy TIThere is a lot more interesting and innovative things going on at TI, including a host of analog technologies from motor drivers to analog conversion to power management. I hope to cover some of this in future posts, especially as I get my hands on some of the hardware and run it through its paces!


Motor Control
There are over 10 billion electric motors manufactured every year around the world and Texas Instruments wants to control them all! The TI folks wanted to be sure that we knew 40% of a typical home electric bill is consumed by an motor, and that better motor control could cut power consumption by more than 1/3, saving all of us a lot of money and reducing wasted energy significantly. The technology exists, they said, but it has been too expensive and hard to use. Thus TI is developing better, cheaper, faster motor control algorithms that will be “software peripherals” pre-programmed into their DSP products. They showed a product called InstaSPIN, which claimed to solve problems like starting and reversing motors without requiring position sensors, and optimizing motor efficiency when not running at full load. TI also claimed that they had reduced the time it takes to figure out a motor control strategy from several weeks to several hours. I’ll have to see it to believe it!
BeagleBone
We recently covered this promising product, and will continue to do so. It is a powerful, inexpensive, and tiny board that can be set up to run Linux in seconds. There is also a great community of developers creating applications and tools for it. At $89, it is definitely recommended to get you started with embedding Linux in your next project.
Pandaboard
> PandaBoard Diagram, image from www.omappedia.com CC BY-SA 3.0
- Onboard 10/100 Ethernet, 802.11 b/g/n
- Bluetooth® v2.1 + EDR
- 1x USB 2.0 High-Speed On-the-go port
- 2x USB 2.0 High-Speed host ports
- General purpose expansion header (I2C, GPMC, USB, MMC, DSS, ETM)
- Camera expansion header
TI Explores the Unknown, Image Courtesy TI
No comments:
Post a Comment